Centrifugal compressor

Centrifugal compressors, sometimes referred to as radial compressors, are a special class of radial-flow work-absorbing turbomachinery that include pumps, fans, blowers and compressors.
The earliest forms of these dynamic-turbo machines were pumps, fans and blowers. What differentiates these early turbo machines from compressors is that the working fluid can be considered incompressible, thus permitting accurate analysis through Bernoulli's equation. In contrast, modern centrifugal compressors are higher in speed and analysis must deal with compressible flow.
For purposes of definition, centrifugal compressors often have density increases greater than 5 percent. Also, they often experience relative fluid velocities above Mach 0.3 when the working fluid is air or nitrogen. In contrast, fans or blowers are often considered to have density increases of less than 5 percent and peak relative fluid velocities below Mach 0.3-0.5
In an idealized sense, the dynamic compressor achieves a pressure rise by adding kinetic-energy/velocity to a continuous flow of fluid through the rotor or impeller. This kinetic energy is then converted to an increase in static pressure by slowing the flow through a diffuser.

Centrifugal compressors are used throughout industry because they have fewer rubbing parts, are relatively energy efficient, and give higher airflow than a similarly sized reciprocating compressor (i.e. positive-displacement). Their primary drawback is that they cannot achieve the high compression ratio of reciprocating compressors without multiple stages. Centrifugal fan/blowers are more suited to continuous-duty applications such as ventilation fans, air movers, cooling units, and other uses that require high volume with little or no pressure increase. In contrast, multi-stage reciprocating compressors often achieve discharge pressures of 8,000 to 10,000 psi (55 to 69 MPa). One example of an application of centrifugal compressors is their use in re-injecting natural gas back into oil fields to increase oil production.
Centrifugal compressors are often used in small gas turbine engines like APUs (auxiliary power units) and smaller aircraft gas turbines. A significant reason for this is that with current technology, the equivalent flow axial compressor will be less efficient due primarily to a combination of rotor and variable stator tip-clearance losses. There are few single stage centrifugal compressors capable of pressure-ratios over 10:1, due to stress considerations which severely limit the compressor's safety, durability and life expectancy.
Additionally for aircraft gas-turbines; centrifugal flow compressors offer the advantages of simplicity of manufacture and relatively low cost. This is due to requiring fewer stages to achieve the same pressure rise. The fundamental reason for this stems from a centrifugal compressor's large change in radius (relative to a multi-stage axial compressor); it is the change in radius that allows the centrifugal compressor to generate large increases in fluid energy over a short axial distance.

A partial list of centrifugal compressor applications include: